Метаболизм магния
и
терапевтическое значение его препаратов

Пособие для врачей

Медпрактика-М
Москва
2002
Метаболизм магния и терапевтическое значение его препаратов.

Рассмотрены роль магния в регулировании обменных процессов и влияние дефицита магния на течение различных заболеваний. Особое внимание уделено применению препаратов магния в детской кардиологической практике.

Авторы – сотрудники Детского научно-практического центра нарушений сердечного ритма МЗ РФ на базе Московского НИИ педиатрии и детской хирургии МЗ РФ:
проф. Школьникова М.А.
Чупрова С.Н.
Калинин Л.А.
Березинская В.В.
Абдулатипова И.В.

© Школьникова М.А., Чупрова С.Н., Калинин Л.А., Березинская В.В., Абдулатипова И.В., 2002
© Оформление: ИД МЕДПРАКТИКА-М, 2002
Введение

Минеральные вещества не обладают энергетической ценностью, как белки, жиры и углеводы. Однако, многие ферментативные процессы в организме невозможно без участия тех или иных минеральных веществ. Они участвуют в важнейших обменных процессах организма: водно-солевом и кислотно-щелочном.

Минеральные вещества делятся на две группы. Первая — состоит из макроэлементов, содержащихся в пище в больших количествах. К ним относятся кальций, фосфор, магний, натрий, калий, хлор, сера. Вторая — состоит из микроэлементов, концентрация которых в организме невелика. В эту группу входят железо, цинк, йод, фтор, медь, марганец, кобальт, никель.

Роль магния в регуляции обменных процессов

Магний — универсальный регулятор биохимических и физиологических процессов в организме: он участвует в энергетическом, пластическом и электролитном обмене (табл. 1).
щее значение и в регуляции сократительной функции миокарда [6]. С одной стороны, при гидролизе АТФ под действием кальциев-магниев-зависимой АТФазы высвобождается энергия, потребляемая при взаимодействии сократительных белков актина и миозина. С другой стороны, кальциев-магниев-зависимая АТФаза участвует в транспорте кальция в цистерны, что приводит к снижению его концентрации в цитоплазме и прекращению взаимодействия сократительных белков [7]. Таким образом, магний обеспечивает нормальное функционирование цикла сокращения-расслабления кардиомиоцита, а на уровне сердца — цикла систолы-диастолы. При дефиците магния возникают нарушения как биосистемной, так и дигастральной функции миокарда.

Биологическая роль магния

Магний играет важную роль в регуляции нервно-мышечной активности сердца, стабилизирует сердечный ритм. Он необходим для метаболизма кальция и витамина С, участвует в энергетическом превращении углеводов. Восполнение относительной недостаточности магния облегчает симптомы нервного напряжения: беспокойство и раздражительность.

Магний нормализует деятельность нервной системы, участвует в качестве кофактора во многих ферментативных реакциях, является антитоксиновым микроэлементом, снижает возбудимость нейронов и передачу нервного импульса [8]. Он необходим для нормального формирования костей и функционирования мышечной ткани, способствует предотвращению остеопороза, регулирует фосфорный, углеводный и белковый обмен, стимулирует распад нукleinовых кислот [9].

Магний помогает организму адаптироваться к холоду, стимулирует структурный компонент костей и зубной эмали, принимает участие в мышечном расслаблении сосудов, стимулирует торможение кишечника и повышает тонус желчных. Препараты магния нормализуют артериальное и интранаружное давление, предотвращают судорожные сокращения мышцы, снимают спазмы сосудов, цикл проводимости участвует в поддержании кислотно-щелочного баланса, снижает уровень холестерина крови, обладают сосудорасширяющим и спазмолитическим действием [10].

Распределение в организме

Общее содержание магния в организме взрослого человека составляет примерно 24 грамма, что соответствует 1000 молекул. В клетках содержится лишь около 39% от общего содержания магния. До 60% находится в костной ткани, из них примерно 20–30% могут быть мобилизованы в условиях дефицита микроэлемента. Около 20% магния содержится в мышечной ткани [6, 9]. Ещё 20% магния сосредоточено в костях и других тканях: около 1% — в межкостном пространстве, 0,5% — в эритроцитах и 0,5% — в плазме [9]. Магний в витаминной форме, необходим для восприятия клетками. Оставшаяся часть распределяется на фракции, связанные с белками (примерно 30%) либо преимущественно с фосфатами или цитратами.

Магниевый баланс регулируется почками. В условиях магниевого дефицита его суточное выведение может упасть ниже 0,5 ммоль в сутки (25 мг/сут), при норме 4–8 ммоль (100–280 мг/сут) [11, 12].

Потребность в магнии

По данным Института питания РАМН, потребность в магнии для взрослых — до 400 мг в день: для женщин — 300 мг, для мужчин — 350–400 мг. У молодых людей, беременных женщин и кормящих матерей потребность в нем повышается на 150 мг/сут (DGE, 1991) и достигает соответственно 450–500 мг/сут.

Усвоение магния организмом из продуктов, богатых белками или жирами затруднено, поскольку с ним магний образует плохо всасывающиеся соединения. Поэтому основную роль в обеспечении магнием организма играют зелень, отруби, сухофрукты. В связи с тем, что многие продукты, содержащие магний очень калорийны, не рекомендуется принимать их в большом количестве для избежания пищевого отравления. Поэтому целесообразно оценивать содержание магния с учетом калорийности (на 1000 ккал).

Магний абсорбируется кишечником лишь на 30–50%. При высоком содержании жиров и белков резорбция может еще более снизиться [12].

Продукты с высоким содержанием магния

- Элеки (вареный длиннозернистый коричневый рис)
- Кукуруза
- Овощи (вареный шпинат, бобы, печеный в кожуре картофель)
- Зеленые культуры с высоким содержанием хлорофила
- Орехи, шоколад
- Питьевая вода из природных источников (с содержанием магния — до 30 мг/л)

Дефицит магния

Распространенность дефицита магния в популяции составляет от 16 до 42% [13]. Его непросто диагностировать по клиническим признакам. Клинический анализ крови дает неполную информацию о содержании магния. При дефиците магния может высвобождаться из депо костей. Таким образом, первоначальное снижение концентрации магния в плазме/сыворотке крови [14] и, следовательно, нормализация не исключает возможности дефицита магния. При обнаружении гипомагниемии (магний плазмы/сыворотки менее 0,8 ммоль/л) диагноз "дефицит магния" неоспорим. Однако, в этом случае, как правило, уже встречены возможности компенсации и недостаточность микроэлемента более выражена.

Для анализа уровня обмена магния используют биохимическое исследование различных биологических жидкостей, в том числе и при нагрузочной пробе. Кроме того исследуется биопсийный материал, обычно скелетная мускулатура [15]. В крови содержание внутриклеточного магния определяют в лимфоцитах и моноцитах флюорометрическим [12], а в эритроцитах — спектрофотометрическим методом [6]. Найболее распространено определение концентрации магния в плазме крови: норма — 0,6–1,1 ммоль/л [11, 14].

Число случаев магниевого дефицита постоянно увеличивается, в том числе вследствие изменений технологии сельского хозяйства, производства продуктов питания и изменения образа жизни в индустриально развитых странах. Магний попадает в продукты растительного происхождения только в том случае, если они произрастают на магнийсодержащих почвах. Органические удобрения, которые широко используются в сельском хозяйстве, снижают проникновение магния из почвы в культуры. На порядок уменьшается содержание магния после термической и другой обработки пищи. Примером может служить резко сниженное содержание магния в продуктах из белой муки по сравнению с продуктами из муки грубого помола. Потребление магния снижается с уменьшением доли продуктов растительного происхождения.

Так как методики достоверного определения количества магния в организме сложны и трудоемки, наиболее оправдано восполнять потребность в магнии с рационального возраста, проконсультировавшись с врачом.

Принципы дефицита магния в организме

Профилактика и варианты дефицита магния в организме могут быть представлены следующим образом:

1. **а) снижение потребления:**
 - пониженное содержание в "цивилизованной пище";
 - диетические ограничения;
 - парентеральное питание с низким содержанием магния;

2. **б) сниженная кишечная резорбция:**
 - продолжительная диарея;
 - синдром нарушения всасывания;
 - антацидная терапия;
 - состояние после резекции кишечника;
 - сниженная резорбция из-за высокого потребления кальция с пищевыми блюдами, высокого содержания жира в пище, большого количества алкоголя;

3. **в) повышенная потребность:**
 - беременность и кормление грудью;
 - повышенная физическая активность (потовыделение);
 - периоды роста;
 - период реконвалесценции после вирусных и бактериальных заболеваний;
 - стресс;

4. **г) повышенное выведение магния:**
 - желудочно-кишечным трактом (рвота, продолжительные диареи, злоупотребление слабительными средствами, синдром малабсорбции);

- почками (нейрогенный синдром, синдром Барттера, потеря соли, почечный ацидоз, диабетическая нефропатия, терапия диуретиками, диализ, диуретическая фаза острой почечной недостаточности);
- при химотерапии опухолей, например, циклофосфамидом (циклофосфан), циклоспорином;
- при антибактериальной (аминогликозиды), противотуберкулезной (вомбацин), иммuno-supрессивной терапии;

д) эндокринные причины дефицита магния:
- гиперпаратиреоидизм;
- гиперпроксифема;
- гиперальдостеронизм;
- диабет.

Симптоматика дефицита магния в организме

В таблице 2 приведены основные симптомы дефицита магния и сопутствующие им состояния. Недостаток магния вызывает в организме спазмы гладкой мускулатуры, повышение общего и периферического сосудистого сопротивления, повышение уровня холестерина в крови, повышение судорожной активности, иммунодефициты, образование осколочных камней в почках, размножение костной ткани и эмбриональных артерий, депрессию, утомляемость, бессонницу. При дефиците магния возрастает

<table>
<thead>
<tr>
<th>Симптомы и состояние</th>
<th>Дефицит или повышенная потребность</th>
</tr>
</thead>
<tbody>
<tr>
<td>Повышенная кислотность желудка</td>
<td>магний</td>
</tr>
<tr>
<td>Застой желчи</td>
<td>магний</td>
</tr>
<tr>
<td>Запоры</td>
<td>магний</td>
</tr>
<tr>
<td>Злопотребление алкоголем и наркотиками</td>
<td>магний, цинк, селен</td>
</tr>
<tr>
<td>Хроническая усталость</td>
<td>магний, марганец</td>
</tr>
<tr>
<td>Общая слабость</td>
<td>магний, калий</td>
</tr>
<tr>
<td>Расстройства сна</td>
<td>магний, марганец</td>
</tr>
<tr>
<td>Отставание в физическом развитии у детей</td>
<td>магний, цинк, медь</td>
</tr>
<tr>
<td>Нарушение остроты зрения</td>
<td>магний, цинк, медь</td>
</tr>
<tr>
<td>Повышенный уровень сахара в крови</td>
<td>магний, хром, марганец, цинк</td>
</tr>
<tr>
<td>Сердечно-сосудистые заболевания</td>
<td>магний, калий</td>
</tr>
<tr>
<td>Повышенная жажда</td>
<td>магний, марганец, кальций, медь, кремний</td>
</tr>
<tr>
<td>Нарученный рост волос и ногтей</td>
<td>магний, цинк, селен, кремний</td>
</tr>
<tr>
<td>Снижение иммунитета</td>
<td>магний, цинк, селен</td>
</tr>
<tr>
<td>Беременность</td>
<td>магний, кальций, цинк, медь, железо</td>
</tr>
<tr>
<td>Лактация</td>
<td>магний, кальций, цинк, медь, кремний</td>
</tr>
<tr>
<td>Повышенная возбудимость у детей раннего возраста</td>
<td>магний, цинк</td>
</tr>
</tbody>
</table>
риск внутри сосудистого тромбообразования. Недостаток магния ускоряет процесс старения, резко повышая риск инсульта и инфаркта.

Магний и ишемическая болезнь сердца

По мнению ряда исследователей, магний является природным гиполипидемическим агентом. Выявлена достоверная прямая связь дефицита магния и атерогеннонных дислипидемиях [18]. Отмечено, что применение препаратов магния у пациентов с гипомагниемией приводит к снижению содержания липопротеинов низкой плотности. В ряде исследований выявлено, что ионы магния необходимы для синтеза циклической АМФ, обладающей вазодилатирующим действием. В связи с этим, предполагается, что гипомагниемия является одним из патогенетических звеньев в развитии вазоспастической стенокардии. Хотя в настоящее время нет единого мнения об эффективности использования препаратов магния у больных с острым инфарктом миокарда, установлена достоверная взаимосвязь аритмий при этом заболевании и активности мембранных Na-K-ATФазы эритроцитов. Применение магния на ранних этапах терапии предсказывает также развитие рефлюкс-эзофагитов.

Магний и артериальная гипертензия

В настоящее время нет единого мнения о связи между содержанием магния в организме и артериальной гипертензией. Ряд исследователей [11, 17] отмечают обратную зависимость между концентрацией магния в эритроцитах и уровнем артериального давления у пациентов с эссенциальной гипертензией (рис. 1). Предполагается, что дефицит магния активирует ренин-ангиотензин-альдостероновую систему, способствуя развитию артериальной гипертензии.

В основе гипотензивного действия магния лежит преходящее влияние на центральные механизмы регуляции артериального давления, подавление прессорных рефлексов, частичное блокирование нервных импульсов, уменьшение выделения катехоламинов, альдостерона, понижение чувствительности сосудов к прессорным агентам, а также снижение вазодилатирующего действия [11, 16]. При этом, максимальный терапевтический эффект солей магния отмечен при симптоматических артериальных гипертензиях, обусловленных заболеваниями почек.

Таким образом, магний является универсальным регулятором биохимических и физиологических процессов у человека. Определение его содержания в биологических жидкостях и в биологическом материале позволяет достоверно судить о балансе магния. Причины дефицита магния многообразны (в том числе и генетические). Гипомагниемия является одним из патогенетических механизмов, определяющих выраженность клинической симптоматики и вероятность развития осложнений при ИБС. Учитывая антиаритмическое, сосудорасширяющее и кардиопротекторное действие препаратов магния, их использование в комплексной терапии больных с ишемией миокарда может способствовать повышению эффективности лечения.

Магний и сахарный диабет

То, насколько хорошо организм усваивает и использует сахар, тесно взаимосвязано с содержанием магния в крови, что делает этот минерал жизненно необходимым для людей с диабетом, особенно с резистентностью к инсулину. Колебания уровня сахара в крови сами по себе увеличивают риск магниевой недостаточности, которая, в свою очередь, в еще большей степени расстраивает сахарный обмен. Добавки магния позволяют
больным 2 типом диабета регулировать содержание сахара в крови. В результате их потребность в таблетированных противодиабетических препаратах обычно снижается и даже может полностью исчезнуть. Люди, подверженные приступам гипогликемии, также могут выравнивать реакции взлеты и падения концентрации сахара в крови. Хотя этот минерал не оказывает столь же эффективного воздействия при диабете 1 типа, он, тем не менее, приносит определенную пользу, которой не следует пренебрегать.

Магний и функции центральной нервной системы

У людей с рассеянным склерозом, паркинсонизмом и другими видами мозговых нарушений содержание магния в крови заметно понижено. При психологических заболеваниях также недаром понижено содержание магния в крови. Предполагается, что выраженный дефицит магния может откладывать психиатрические симптомы. Все основные компоненты триады минимальной мозговой функции — моторный дефицит, дефицит внимания и не- контролируемое поведение во время стресса могут зависеть от содержания магния в организме. Более того, дети с минимальной мозговой функцией переживают стрессы не только чаще, но и неадекватно глубже, чем здоровые дети [19]. В состоянии стресса увеличивается выведение магния из организма, так как стрессовые гормоны адреналин и кортизон усиливают его экскрецию с мочой [20]. Повышенная физическая активность, присущая детям с минимальной мозговой функцией, также способствует усилием расхода магния [21].

Взаимодействие магния с другими веществами, витаминами и минералами

Взаимодействие магния с другими веществами, витаминами и минералами указано в таблице 3.

Магний при нарушениях сердечного ритма у детей

В последнее время все чаще стали возникать интерес к использованию магния для лечения сердечных аритмий. Точный механизм, посредством которого магний подавляет аритмии, до сих пор не ясен, однако известно, что магний очень важен для активации мембранных АТФ-азы (какого равно, известно около 250 ферментов, зависящих от магния), участвующей в транспорте Na+ и K+: при гипомагниемии нарушается транспорт калия в клетку, возникает гипокалиемия. Влияя на транспорт натрия и калия через клеточные мембраны, магний способен, следовательно, существенно влиять на сердечный ритм. При гипомагниемии особенно страдает деятельность как скелетных мышц (склебость), так и миокарда. Следовательно, следует отметить, что низкий уровень магния в сыворотке нередко свидетельствует об уменьшении его содержания в организме, однако также общее количество магния может наблюдать и при отсутствии гипомагниемии. Следовательно, представляется важным знание определенных клинических и электрокардиографических признаков гипомагниемии.

Таблица 3

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кальций</td>
<td>Уменьшает усвоение магния.</td>
</tr>
<tr>
<td>Фосфаты кислоты</td>
<td>Увеличивает потребность в магнии из-за увеличения активности ферментов, которым для нормальной работы необходим магний.</td>
</tr>
<tr>
<td>Железо</td>
<td>Уменьшает всасывание магния в кишечнике</td>
</tr>
<tr>
<td>Бериллий</td>
<td>Снижает усвоение магния в кишечнике (но не стимулирует эффект более сильнее происходит на кальций, дополнительный прием вит. Д3 без дополнительного приема магния может создать относительный дефицит магния)</td>
</tr>
<tr>
<td>Дефицит витамина E</td>
<td>Понижает уровень магния в тканях</td>
</tr>
<tr>
<td>Колой</td>
<td>Увеличивает потерю магния через почки</td>
</tr>
<tr>
<td>Высвобождение в рационе жира</td>
<td>Уменьшает усвоение магния (т.к. жирные кислоты и магний образуют много- подобные связи, которые не всасываются в желудочно-кишечном тракте)</td>
</tr>
<tr>
<td>Высококачественная пища</td>
<td>Способствует потере нуклеотидов и минеральных компонентов, которые не всасываются в желудочно-кишечном тракте</td>
</tr>
<tr>
<td>Потребление большого количества углеводов</td>
<td>Увеличивает потребность в магнии, т.к. влияет на метаболизм жиров, как и увеличивает потерю магния с мочой</td>
</tr>
<tr>
<td>Высокобелковый рацион</td>
<td>Увеличивает потребность в магнии, особенно при быстром строительстве новых тканей — у растущих организмов, беременных и кормящих женщин</td>
</tr>
<tr>
<td>Витамины группы B</td>
<td>Магний необходим при образовании тиаминфторосфата, который должен формироваться в организме до использования в нем тиамина и других витаминов группы B</td>
</tr>
</tbody>
</table>

Наиболее опасными клиническими проявлениями гипомагниемии являются желудочковая экстрасистолия и тахикардия, в том числе тахикардия типа "пируэт" (torsades de pointes), мультифокусная предсердная тахикардия, фибрилляция предсердий и желудочков [22]. Считают, что дефицит магния может приводить к западению реполяризации, сопровождающемуся удлинением интервала QT на ЭКГ. До настоящего времени нет единого мнения о механизмах развития аритмий и проводимости сердца при дефиците магния. Предполагают, что гипомагниемия может способствовать развитию гипокалиемии. При этом увеличивается мембранный потенциал покоя, нарушается процесс деполяризации и реполяризации, сокращается возбудимость клеток, замедляется проводимость электрического импульса, что и способствует развитию аритмий. С другой стороны, внутриклеточный дефицит магния повышает активность синусового узла, сокращает амплитуду и удлиняет относительную репфрактерность [14].

Ряд исследователей отмечает, что препараты магния следует применять для купирования желудочковых и нарушений ритма сердца при отсутствии эффекта от применения других антиаритмиков. Эффективность терапии солями магния значительно выше при желудочковых аритмиях по срав-
нению с недуглодуктовыми, однако, если последние развиваются на фоне дефицита магния, эти препараты также могут оказаться полезными.

Одним из основных кардиологических показаний к применению препаратов магния являются аритмии, развивающиеся на фоне удлинения интервала QT.

Предполагается, что эффективность терапии солями магния при аритмиях связана не только с устранением гипомагниемии, но и с фармакологическим действием их как антиаритмического средства.

Окисные электрокардиографические эффекты гипомагниемии могут быть представлены следующим образом:
- Повышение ЧСС
- Инверсия или удлинение зубца T, более выраженная волна U
- Неспецифическая депрессия сегмента ST
- Увеличение продолжительности интервала QT
- Желудочковые аритмии (эктнитриолия, тахикардия, фибрилляция желудочков)
- Повышение токсичности сердечных глюкозидов (развитие аритмий, вызванных дигиталинной интоксикацией)

В качестве антиаритмического препарата магний преимущественно используется для лечения полиморфной желудочковых аритмий типа "torsades de pointes".

Благодаря эффективности магния, быстроте действия и относительной безопасности внутривенное введение магния стало методом выбора для купирования данного жизнеугрожающего аритмии. Вероятно, антиаритмический эффект магния может быть обусловлен как положительным влиянием на транспорт калия через клеточные мембраны, так и супрессивным эффектом на развитие следовых деполяризаций. Внутривенное введение магния обычно подавляет полиморфную желудочковую тахикардию даже при нормальном уровне магния в сыворотке.

Положительный антиаритмический эффект магния доказан также при лечении аритмий, связанных с дигиталиной интоксикацией. С одной стороны, магний нормализует действие Na+/K+- насоса (ингибирование Na+/K+ насоса имеет основное значение в развитии аритмий, вызванных дигиталиной интоксикацией), с другой стороны, устраняется возможный дефицит магния (дигиталин может приводить к снижению магния в организме).

В литературе имеются сообщения о купировании суправентрикулярных пароксизмальных тахикардий (рис. 2 A, B) посредством внутривенного введения магния. Отмечен положительный эффект магния и при предсердных многоочаговых тахикардиях. Препараты, содержащие магний также могут быть использованы для профилактики аритмий после операции на сердце и при проведении операций под общим наркозом у больных, имеющих в анамнезе желудочковые тахикардии.

Антиаритмический эффект препаратов, содержащих магний может быть представлен следующим образом:
- Полиморфная желудочковая тахикардия "torsades de pointes" (особенно при приобретенном - вторичном синдроме удлиненного интервала QT).
- Желудочковые аритмии при магниевой недостаточности (уровень магния в плазме/сыворотке крови менее 0,8 ммоль/l).
- Желудочковые аритмии вследствие терапии дигиталином.
Применение препаратов магния в детской кардиологической практике

В кардиологической практике находят широкое применение несколько препаратов, различающихся как по уровню содержания магния, так и по способам введения.

- **Магнерот®** (Wörwag Pharma GmbH & Co. KG) — активное вещество оротат магния. Одна таблетка содержит 500 мг оротата магния или 32,8 мг магния. Оротовая кислота способна стимулировать синтез АТФ. Так как 90% внутриклеточного магния связаны первично на АТФ, то это относительное повышение внутриклеточного депо АТФ посредством оротовой кислоты представляет собой основную предпосылку фиксации внутриклеточного магния. Форма выпуска: упаковки по 20 и 50 таблеток.

- **Кормагнезин®** (Wörwag Pharma GmbH & Co. KG). Форма выпуска: раствор для инъекций 10% (10 мл в ампуле по 5 штук в упаковке, 1 мл раствора содержит магния сульфат 100 мг, в т.ч. магния 20,19 мг = 0,83 моль/л Mg^{2+}), раствор для инъекций 20% (10 мл в ампуле по 5 штук в упаковке, 1 мл раствора содержит магния сульфат 200 мг, в т.ч. магния 40,38 мг = 1,66 моль/л Mg^{2+}). Введение 10% раствора 5–50 мг/кг, максимум 2 г в течение 1–2 мин., при неэффективности, повторно через 5–10 мин.)

- Панангин (аспакал) — препарат, являющийся источником ионов не только магния, но и калия.

- Магне B6 — комбинированный препарат, состоящий из соли магния и витамина B6.

Для экстренного лечения аритмий целесообразно внутривенное введение препаратов магния. Применение магния в данной ситуации внутрь нецелесообразно из-за вариабельной и ограниченной абсорбции магния в желудочно-кишечном тракте.

Внутривенное введение магния (Кормагнезин®) для экстренного лечения нарушений сердечного ритма безопасно. Однако следует помнить, что при нарушении его введения (например, у пациентов с тяжелой почечной недостаточностью) может возникнуть гипермагнеземия (табл. 3). Особенно часто это проявляется у новорожденных, так как экскреция магния у них замедлена, но в целом данное осложнение встречается достаточно редко.

<table>
<thead>
<tr>
<th>Признаки гипермагнеземии (Ричард М. Фогерс, 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень Mg^{2+} в сыворотке (мкмоль/л)</td>
</tr>
<tr>
<td>5–10</td>
</tr>
<tr>
<td>10–15</td>
</tr>
<tr>
<td>15–20</td>
</tr>
<tr>
<td>20–25</td>
</tr>
</tbody>
</table>

1 ммоль=2 мкмоль=24 мг элементарного магния
Эффективность препаратов, содержащих магний, в комплексной терапии жизнеугрожающих аритмий у детей

Одним из наиболее распространенных наследственных заболеваний, связанных с высоким риском внезапной смерти, является синдром удлиненного интервала QT. Риск внезапной смерти в отсутствие адекватного лечения достигает при данном синдроме 71% [23].

В настоящее время известны два варианта наследственного синдрома удлиненного интервала QT (LQTS), названные по фамилиям авторов: синдром Романо-Уорда и Джервелла-Ланге-Нильсена. В последнем случае удлинение QT сочетается с врожденной глухотой. Частота встречаемости наследственного синдрома удлиненного интервала QT по данным исследований последних лет достаточно высока. Установлено, что синдром Романо-Уорда выявляется в популяции с частотой 1:10000 [24], а в детском возрасте 1:5000–1:7000 [25]. Синдром Джервелла-Ланге-Нильсена является редкой патологией. Согласно данным Frasier G.R., данный синдром встречался в популяции 4–10 летних детей Северного Королевства с частотой 1,6 на 1 млн. По данным Bricker J.T. [26] наследственный синдром удлиненного интервала QT с высокой частотой выявляется у лиц, страдающих пароксизмальными состояниями, а у детей с врожденной глухотой – около 0,8%.

Этнология синдрома до недавнего времени оставалась до конца невыясненной, хотя обнаружение заболевания у нескольких членов одной семьи позволяло практики с момента первого описания рассматривать его как наследственную патологию. Были установлены соотношения числа пораженных и непораженных лиц в семьях больных с синдромом Джервелла-Ланге-Нильсена и Романо-Уорда. Они соответствовали аутосомно-рецессивному и аутосомно-домinantному типам наследования соответственно [27]. Все эти данные послужили основанием для активной разработки генетической теории и поиска гена, ответственного за развитие заболевания. Мутации в гене, ответственном за развитие синдрома удлиненного интервала QT, приводят к нарушению функционирования ионных каналов (калиевого или натриевого) и увеличению продолжительности потенциала действия в кардиомиоцитах. Нарушение функционирования ионных каналов при сопутствующих условиях могут облегчить появление ранних и поздних последеполяризаций и, следовательно, полиморфной желудочковой тахикардии типа "пируэт" ("torsades de pointes").

В 1985 году Schwartz P.J. [23] предложил применить большие и малые диагностические критерии. К большим критериям отнесены: удлинение корригированного интервала QTc более 440 мс на ЭКГ похолок синуса; случаи высокой частоты аритмии, включая синдром RBBB/alternationа уба T; низкая частота сердечных сокращений и нарушение процесса реполяризации миокарда желудочков. Наследственный синдром удлиненного интервала QT диагностируется при наличии двух больших или одного большого и двух малых критериев. Критерии были дополнены Schwartz P.J. в 1993 г.

Таким образом, к настоящему времени установлено, что наследственный синдром удлиненного интервала QT является заболеванием с четкими диагностическими критериями, доказана генетическая природа патологии [28, 29].

Учитывая патогенез наследственного синдрома удлиненного интервала QT, участие магния в нормальном функционировании Na+/K+-насоса, а также возможность оказания магний супрессивного эффекта на развитие сложных деполяризаций (с возникновением последеполяризаций при синдроме удлиненного интервала QT может быть связано развитие желудочковой тахикардии "torsades de pointes"), нами было проведено исследование по оценке эффективности МАГНЕРОТА® в комплексном лечении детей с наследственным синдромом удлиненного интервала QT.

Диагноз ставился на основании общепринятых диагностических критериев (Schwartz P.J., 1985, 1993).

На рис. 3 представлена ЭКГ больной В., 12 лет, включенной в данное исследование.

В исследовании было включено 21 ребёнок с наследственным синдромом удлиненного интервала QT, из них 14 мальчиков (67%), 7 девочек (33%), синкопальных 9 (43%) человек, бессинкопальных – 12 (57%). Средний возраст пациентов составил 12,4 года, 13 детей (62%) постоянно с антиаритмической целью получали атенолол. Магнезия назначалась в течение 6 недель. Суточная доза магнезита зависела от возраста детей и составляла: 49,2 мг (5–7 лет), 65,6 мг (7–10 лет), 98,4 мг (старше 10 лет).

Всем детям была проведена электрохромография (аппарат FUKUDA DENSII FCP-4101, Япония) до назначения магнезита и на фоне лечения через 6 недель. Оценивались показатели (на минимальной и максимальной ЧСС) продолжительности интервала QT во II стандартном отведении (QT, корригированный интервал QT – определялся по формуле Базаза как отношение QT к VFR) в исходе (клиноположении) и после физической нагрузки.

При сравнении продолжительности интервала QT (QTc, QTC) до и на фоне терапии магнезитом достоверных различий получено не было.

Учитывая высокий процент (до 48%) возникновения у детей с наследственным синдромом удлиненного интервала QT приступов потери сознания на фоне физической нагрузки, нами был определен показатель разницы между QTC до нагрузки и на фоне физ. нагрузки. До назначения магнезита этот показатель составил 77 мс, а на фоне приема Магнезита – достоверно уменьшился до 46 мс (p<0,05).

Достоверное уменьшение данного показателя, вероятно, связано с тем, что магний, влияя на активность мембранной АТФазы, улучшает транспорт калия через клеточные мембраны. Очень медленно активирующийся К+ ток (I_K) важен для поддержания адекватной продолжительности потенциала действия по отношению к частоте сердечных сокращений.
Применение препаратов, содержащих магний, у больных с приобретенным (вторичным) синдромом удлиненного интервала QT

Кроме наследственного существует приобретенный (вторичный) синдром удлиненного интервала QT. Несмотря на множество причин, приводящих к вторичному удлинению интервала QT (табл. 4), в этих случаях также имеет место повышенный риск развития аритмий и сердечной смерти вследствие полиморфной желудочковой тахикардии ("torsades de points").

Одна из причин вторичного удлинения интервала QT и как следствие развития "torsades de points" может быть связана с применением определенных лекарственных препаратов - антибиотики, антиаритмические и антигистаминные препараты, противогрибковые и психотропные препараты.

Метаболизм лекарственных препаратов в организме человека достаточно сложен и осуществляется с помощью специфических и неспецифических ферментов, контролирующих генетическими механизмами. Одним из основных систем, принимающих участие в биотрансформации лекарств, являются системы микросомального окисления и ацетилирования [31].

Главной окисляющей системой ферментов является система изоферментов цитохрома P-450 [32]. Многообразие известных лекарственных препаратов, удлиняющих интервал QT, метаболизируется с помощью данной системы. Так, антигистаминные лекарственные препараты астемизол и терфенадин (табл. 4), способные удлинять интервал QT, большей частью метаболизируются с помощью изоферментов САА (система цитохрома P-450). Существует множество препаратов, оказывающих существенное влияние на биотрансформацию других лекарств в печени, угнетая ее. К препаратам, ингибирующим микросомальные ферменты печеночных клеток относятся, например эритромицин, кордарон, кетоконазол, флуконазол и др. При совместном применении одного из антигистаминных препаратов (астемизола или терфенадина) и ингибитора САА возможно увеличение концентрации в плазме астемизола (терфенадина) и увеличение продолжительности интервала QT. Однако, увеличение концентрации в плазме другого антигистаминно го препарата лоратадина, использующего тот же метаболический путь, не приводит к увеличению продолжительности потенциала действия в кардиомиоцитах [33]. Это обстоятельство может свидетельствовать о том, что patients с вторичным удлинением интервала QT, вызванное приемом лекарственных препаратов, имеют генетическую предрасположенность для возникновения аритмий в результате определенных мутаций в генах HERG или KCNE2, приводящих к блокированию быстрого компонента калиевого тока с задержанным выведением (I_K) и, как следствие, увеличению продолжительности потенциала действия [34, 35]. Описаны спорадические мутации в этих двух генах, приводящие к развитию "torsades de points" при приеме определенных лекарственных препаратов. Так, например, у женщин с развивающейся на
<table>
<thead>
<tr>
<th>Таблица 4 Причины приобретенного удлинения интервала QT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Группы препаратов</td>
</tr>
<tr>
<td>Антиаритмические препараты</td>
</tr>
<tr>
<td>класс IA</td>
</tr>
<tr>
<td>класс III</td>
</tr>
<tr>
<td>Тип гликозиды</td>
</tr>
<tr>
<td>Антигистаминные препараты</td>
</tr>
<tr>
<td>Антигипертензивные препараты</td>
</tr>
<tr>
<td>Нарушения</td>
</tr>
<tr>
<td>Электромагнитные</td>
</tr>
<tr>
<td>Электрические</td>
</tr>
<tr>
<td>Экстренное</td>
</tr>
<tr>
<td>Эндокринные</td>
</tr>
<tr>
<td>Группы патологических состояний</td>
</tr>
<tr>
<td>Кардиальная патология</td>
</tr>
<tr>
<td>Эндокринная патология</td>
</tr>
<tr>
<td>Неврологическая патология</td>
</tr>
<tr>
<td>Социальная патология</td>
</tr>
</tbody>
</table>

Феномен лечения клаустрофобией "torsades de pointes" был обнаружен на спорадической миокардиальной мутации в гене KCNE2, кодирующим трансмембранный белок MiPP1. Комплекс MiPP1/HERG является калиевым каналом, контролирующим I." Калиевые каналы с измененными субъединицами (QSE-MiPP1) были патологическими, так как они активировались менее быстро, чем в норме. Соответственно отмечалось и суммарное снижение калиевого тока I. Более того, QSE-MiPP1 каналы были более чувствительны к ингибитирующему действию лекарственных препаратов, чем каналы, образованные нормальным белком. Таким образом, в данном случае редкая мутация повысила риск развития жизнеугрожающей аритмии ("torsades de pointes") и в результате нарушения процесса реполяризации в миокардоцитах и повышения чувствительности к лекарственному препарату, отсутствующих в норме. Представляется также интересным тот факт, что помимо мутаций у пациентов с жизнеугрожающими аритмиями, индуцированными приемом лекарственных препаратов, был обнаружен также простой нуклеотидный полиморфизм (TBA-MiPP1), встревожившийся по данным авторов у здоровых людей в 1,6% [35]. Пациент с выявленным полиморфизмом имел нормальную ЭКГ в покое и значительное увеличение продолжительности интервала QT на фоне приема бактамина, что, вероятно, может объясняться ингибирующим действием на I. одного из компонентов данного препарата сульфагетоксазоло.

Однако до конца мозайки, каким образом многие структурно различные соединения блокируют I., что вызывает определенные трудности в создании новых безопасных лекарств [36] и разработке методов предупреждения удлинения интервала QT и как следствие жизнеугрожающей аритмии при назначении ряда уже известных лекарственных препаратов.

В данном случае применение препаратов, содержащих магний, можно подразделить на две основные ситуации:
1. Предупреждение развития медикаментозно-индуцированных полиморфных желудочковых тахикардий.
2. Непосредственное купирование данных жизнеугрожающих аритмий.

Развитие медикаментозно-индуцированного полиморфного желудочкового тахикардии, как правило, связывают с возникновением массы пораженных клеток сердца, в том числе и патологических эффектов на развитие указанных полиморфных тахикардий [37, 38]. Поэтому назначение препаратов магния (курсы) показано пациентам, получающих антиаритмические препараты и особенно препараты с потенциально возможным удлинением интервала QT (табл. 4).

При развитии torsades de pointes, характерной для больных с удлинением интервала QT, первоочередным средством выбора при купировании данной тахикардии является также препарат магния — кормагеназол (сульфат магния) — введение 10% раствора 5—50 мг/кг, максимум 2 г в течение 1–2 мин., при неэффективности, повторно через 5–10 мин.

Другой причиной вторичного удлинения интервала QT, связанной с магнием, может быть непосредственно хроническая гипомагниемия (табл. 4). К наиболее важным причинам магниевой дефицита относятся: снижение потребления, снижение кишечной резорбции, повышение потребности (например, при стрессе), повышение выведения (патология желудочно-кишечного тракта или почек), эндокринные нарушения. При данных состояниях важным представляется устранение основных причин, приводящих к гипомагниемии.
Рекомендуемые дозы препарата Магнерот®
в зависимости от возраста

<table>
<thead>
<tr>
<th>Возраст (лет)</th>
<th>Схема приема</th>
<th>Суточная доза магния (мг)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>1/4 табл. 2-3 раза в день</td>
<td>16,4–24,6</td>
</tr>
<tr>
<td>5-7</td>
<td>1/2 табл. 2-3 раза в день</td>
<td>32,8–49,2</td>
</tr>
<tr>
<td>8-10</td>
<td>1 табл. 2 раза в день</td>
<td>65,6</td>
</tr>
<tr>
<td>старше 10</td>
<td>1 табл. 3 раза в день</td>
<td>98,4</td>
</tr>
</tbody>
</table>

Показания к применению Магнерота® у детей с риском развития сердечно-сосудистой патологии
1. Профилактика аритмий у пациентов, перенесших операцию на сердце
2. Бегето-сосудистая дистония (по симпатикотоническому типу)
3. Состояние после сильного психо-эмоционального стресса
4. Прием препаратов, способствующих ускоренному выводению магния

Повторные курсы 1-2 раза в год

Показания к назначению Магнерота® у детей с сердечно-сосудистой патологией
1. Остро развившиеся, в том числе жизнеугрожающие аритмии (Корм-маг-незин®)
2. В комплексной терапии хронических тахиаритмий, экстракстолитов
3. В комплексной терапии первичного синдрома удлиненного интервала QT при наличии неадекватной адаптации интервала QT на фоне повышения ЧСС и отсутствии выраженной брадикардии на ЭКГ
4. Вторичное удлинение интервала QT (в том числе возникшие на фоне приема лекарственных средств, удлиняющих интервал QT)
5. Миокардиодистрофии
6. Сердечная недостаточность
7. Артериальная гипертония
8. Легочная гипертензия

Повторные курсы 2 раза в год

Список литературы
1. Райцес В.С. Нейрофизиологические основы действия микроэлементов. Л.; Медицина, 1981, 152.
2. Е.Б. Грушин Микроэлементы и здоровье. (Приложение к газете «Наш здоровый образ жизни»)
6. Халецкая О.В., Трощин В.М. Минимальные дисфункции мозга в детском возрасте. Нижний Новгород, 1995, 37 с.

31. Львин Е.Т., Трубник В.И., Ванюков М.М. "Введение в современную фармакогенетику" Москва "Медицина"–1984, 159 с.

Приложение

МАГНЕРОТ

Регистрационный номер: П № 012966/01-2001

Международное непатентованное название:
Магния ортат (Orotic acid, magnesium salt)

Состав и формы выпуска:
– таблетки по 500 мг магния ортата (32,8 мг элементарного магния) по 10 таблеток в блистерах по 2 или 5 блистеров в картонных коробках.

Фармакологические свойства:
По фармакологическим свойствам относится к группе средств, вливающих на метаболические процессы. Оротатовая кислота способствует росту клеток, участвует в процессе обмена веществ, необходима для фиксации магния на АТФ клетке, что обеспечивает проявление его действия. Магний принимает участие в энергетическом, белковом, жировом, углеводном, нуклеиновом обмене и является составным физиологическим антагонистом кальция. Он обеспечивает нормальное функционирование клеток миокарда, способствует повышению резистентности к стрессу. Магний угнетает нервно-мышечную передачу. При магниевом дефиците он выполняет заместительную функцию.

Фармакокинетика:
Исследования фармакокинетики препарата магнерот не проводились.

Показания к применению (в комплексном лечении и профилактике):
• Инфаркт миокарда.
• Хроническая сердечная недостаточность.
• Магниевисимые аритмии.
• Спастические состояния (в том числе ангиоспазм).
• Атеросклероз.
• Гипертропа.

Противопоказания:
• Почечная недостаточность.
• Мочекаменная болезнь.

Беременность и кормление грудью:
В периоды беременности и кормления грудью применение препарата по показаниям возможно, в эти периоды потребность в магнии значительно увели-
чиваются. Нарушения магниевого баланса могут привести к серьезным осложнениям, в том числе к невынашиванию беременности.

Способ применения и дозы:
Препарат назначают по 2 таблетки 3 раза в день в течение 7 дней, затем - по 1 таблетке 2-3 раза в день. Продолжительность курса не менее 4-6 недель. Повторные курсы - после консультации врача. При ночных судорогах икроножных мышц рекомендуется принимать по вечерам по 2-3 таблетки.
Таблетки следует запивать небольшим количеством жидкости.

Побочное действие:
- Со стороны желудочно-кишечного тракта: неустойчивый стул и диарея (при применении высоких доз), которые обычно проходят самостоятельно при снижении дозы препарата.

Особые указания:
Магнерот можно применять длительное время. Следует учитывать, что к дефициту магния в организме могут приводить заболевания желудочно-кишечного тракта, потребление пищевых продуктов со сниженным содержанием магния, хронический алкоголизм, прием некоторых лекарственных препаратов (гепатопротекторов, диуретиков, глюкокортикOIDов, инсулина, миорелаксантов), состояние, повышающие потребность в магнии (титаномания, стресс, беременность).

Передозировка:
Возможно усиление проявлений описанных побочных реакций.

Условия хранения:
При температуре не выше 25°C.
Хранить в местах, недоступных для детей.

Срок годности:
5 лет.
Не использовать позже срока, указанного на упаковке.

Условия отпуска из аптек:
Отпускается без рецепта врача.

Производитель:
"Вера Фарма ГмбХ и Ко, КГ", Беблинген, ФРГ